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Abstract. AsamodelfordiKusion,alatticeversionof thehrentx gasisstudid,us 
ing specular collision rules. A previously developed theoty, containing the molecular 
chaos approximation. several ring approximations and the effective medium approx. 
imtion (EMA), is applied and compared with simulations. The correction to the 
Boltzmann equation result. resulting from effective medium approximation (EMA) 
is opposite to the simulation results. This indicates that other diagrams than ring 
diag- should he considered; which is pecul iar  ifune considers the succesles of the 
EMA for other models. This is investigated by using variank of the model. The dif- 
fusion tensor is in general non-kotropic; the corresponding features are qualitatively 
described by theory. 

1. Introduction 

In the widely studied class of models known as cellular automata (CA) [l-61, asubclass 
consists of lattice versions of the Lorentz gas. The classical Lorentz gas has been used 
extensively Cor studying diffusion [7-141. The model is defined by a random static 
array of scatterers, in which independent particles move ballistically in between two 
collisions with scatterers. The scatterers may have different shapes, such as hard 
...hnmo d;*...n..,4 ,h.na. en..QroC th-  mAll;m;-na .In., l l . ,  a l Q & c  Thn 

lattice version has scatterers that reside on the sites of a lattice, in a random but 
fixed configuration. The analogue of different shapes of the scatterers are here the 
different collision rules that  can be chosen to describe the interaction of the moving 
particles with the scatterers. In previous papers we have used probabilities to describe 
the outcome of the collisions [15-181. However, i t  may be preferable to consider 
deterministic (rev.r..h!e) ! m s  to describe the microscopic dynzmics. !E order to do 
so, we discussed the c h i d  model [19], for which we refer to the preceding paper [20]. 
In this model a scatterer rotates the direction of the velocity of the incoming particle 
over an angle that depends on the type of the scatterer. The theory that we developed 
to describe the model with stochastic collision rules was generalized successfully to the 
chiral model. However, some effects that seem to arise from the deterministic character 
r e d t  in differencp-3 hetween theory and computer simulations for the chiral mode!. 

Therefore we wznt t o  study a different choice of the collision rules, in order to 
gain more insight into the dependence of the results on the specific choice of the 
deterministic collision rules. 

In this paper we will apply the theory t o  the mirror model of Ruijgrok and Cohen 
[22]. This model is known to show peculiar behaviour, as results from extensive 
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computer simulations indicate [23-251. The behaviour is rather different from what 
one would expect from one’s knowledge of the stochastic model of [17] or the chiral 
model of [20]. Because of the deterministic collkion rules, the path of an individual 
ballistically moving particle is completely determined once the scatterer configuration, 
the starting position of the particle and its initial velocity are known. The model is 
defined in two dimensions, hut one may consider higher-dimensional generalizations, 
as we will mention later. 

The outcome of a collision of a moving particle with a scatterer is completely 
determined by the direction of the incident particle and the type of scatterer. As in 
the chiral model, the direction is turned over 90°, but there is an essential difference 
in the way this depends on the scatterer type: the scattering rules are such that we 
can think of the scatterers as mirrors that are placed at random on the lattice sites. 
The orientation of the mirrors makes a 4 5 O  angle with the lattice axes. There are two 
types of mirrors (see figure l), and originally the model did not contain reflectors [22]. 
For the subsequent analysis it is, however, straightforward to include reflections. For 
reasons of completeness it is even necessary to do so: our self-consistent calculations 
will in general generate a matrix of effective transition rates that has a non-zero entry 
for the reflection probability. 

Figure 1. Mirror model. 

The particles may be (will he) trapped in  closed orbits, of which the length dis- 
tribution has been investigated [22]. For an illustration we refer to figure 1, where 
we show an example of a particle trajectory. A justification for omitting reflectors in 
actual simulations is that the moving particle will retrace its path completely once a 
reflector is hit; a pathological one-dimensional feature that one may wish to avoid. 

As the scattering direction is ‘attached’ to the lattice, anisotropy will be observed 
if the densities of left- and right-oriented mirrors are unequal, and in general the 
elements of the diagonalized diffusion tensor are not equal (see later). 

A generalization to three dimensions can be constructed in a straightforward man- 
ner [26]. 

For the two-dimensional model, extensive computer simulations have been carried 
out. The majority of them concern the diffusion coefficient, defined as the long-time 
limit of the time-dependent diffusion coefficient D ( t )  la (z’), i.e. one basically 

2 :  looks at the second moment of the distribution of the moving particles. Although 
early simulations could still be explained by the Boltzniann approximation [22], later 
simulations with higher statistics definitely demonstrated a positiue deviation from 
Boltzmann [23-251. This is remarkable, because in Lorentz gases of the standard type, 
like the continuous Lorentz gases [U,  131, hopping models [27-321, and the stochastic 
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lattice Lorentz gas of [17], one usually fiiids negative corrections to  Boltzmann. These 
come from ring collisions, giving rise to  negative contributions to  the VACF. 

In contrast with Lorentz gases, fluids have ring integrals that lead to  positive 
velocity correlations (phenomenologically interpreted in terms of vortex flow), and 
the experimental and simulation results for the diffusion coefficient are always larger 
than what the Boltzmann approximation predicts. 

For the present model with equal numbers of right and left mirrors, Kong and 
Cohen [23] were able t o  explain the sign, but not the magnitude of this deviation by 
an intuitive argument in terms of local fluctuations of excesses of right mirrors or of 
left mirrors. A similar effect was studied in the ‘pipeline’-like trajectories between 
two nearby ‘trees’ in the Ehrenfest wind-tree model [33]. Both types of fluctuations 
lead to  an increase of the diffusion coefficient. Unfortunately it is not obvious how to 
relate these fluctuations to any special sequence of correlated collisions [17,18], and 
how to incorporate them in a kinetic theory analysis. Therefore it is worthwhile to  
investigate the mirror model with the help of our approximate kinetic equations. In 
order to  investigate the origin of the deviations, we also performed simulations with 
transmitting and flipping mirrors. 

A variant of the mirror model (also studied in [22] and [23]) is one in which the 
mirrors flip orientation upon being hit by a moving particle. In the case that we have 
more than one moving particle in the system (diffusion is usually pictured in terms of 
the spreading of a cloud of particles), this clearly introduces interactions between the 
moving particles and strictly speaking t,he model cannot be considered as a Lorentz gas 
of non-interacting moving particles. However, i f  one considers only one moving particle 
the model does have the characteristics of a Loreiitz gas. In addition, the distribution 
function of the left and right mirrors tends to a fifty-fifty distribution, due to collisions 
with the moving particie. Computer sinmiations show that the difiusion coefficient, 
in the case that there is only one particle present i n  the system, surprisingly coincides 
with the results for more moving particles [23]. The interaction with the flipping 
mirrors mainly randomizes the scatterings, and thus iucreases the validity of kinetic 
theory arguments. We will consider variants of the mirror model to investigate this 
further. 

vve mention some other properiies oE the modei. An interesting feature is that 
the probability distribution of displacements is non-Gaussian, which is reflected in the 
fourth moment of the probability distribution [23]. Therefore the probability distri- 
bution of displacements does not satisfy a diffusion equat.ion. Finally, the full lattice 
with equal amounts of the two types of mirrors (yL = yR = fr) can be mapped onto 
the bond percolation model a t  criticality, and the critical exponents of the moments 
can he calculated [34,23]. 

Before starting the analysis in the next sections, we introduce some notation. A 
lattice site is either empty (with probability a = 1 - c), or contains one of the three 
types of scatterers: left-mirrors (with probability yL), right-mirrors (with probability 
yR) or reflectors (with probability p), The probabilities are normalized by 

... 

a + p + yL + yR = 1. 

P + Y L +  YR = c. 

(1.1) 

(1.2) 

By introducing the concentration c = 1 - a of occupied sites, we have also 

We can write down the generalization of the theory of [17,18], derived in detail 
in [20]. Where necessary we will repeat the formulae we need, without giving the 
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detailed explanation. We will give the Chapman-Kolmogorov equation for this model 
(section 2) and consider the symmetry group of the collision operators (section 3). The 
Boltzmann approximation (section 4), the ring and repeated-ring approximations and 
their corresponding self-consistent versions (section 5 )  and the full effective medium 
approximation (EMA, section 6) will be analysed. We will discuss flipping and trans- 
mission in section 7. The results will be compared with computer simulations. We 
will also consider a case tha.t has a non-isotropic diffusion tensor. 

2. Chapman-Kolmogorov equation 

We will discuss the two-dimensional version of the mirror model. The equation of 
motion is the Chapman-Kolmogorov (CK) equation, which can be written down after 
assigning to every lattice site n the stochastic variables an, Pn, yk and y,". Each of 
them can take on the values 0 or 1, subject to the constraint a, + P,, + y," + y," = 1: 
for given n only one of them is different from zero. The CI< equation is then given by 
[17,351 

p ( n + e i , i , t + 1 )  = a,,P(n,i,t) + ~ , , x w t ~ ( n , i t )  
j 

r , L C ~ ~ ~ ( . , j , t ) + y , R C ~ ~ p ( n , j , t )  (2.1) 
j j 

where the transition matrices for the velocities, defined on the basis { e l ,  e* ,  e 3 ,  e4} 
of figure 1, are 

1 0 0 0  0 0 1 0  
W A = l = ( o  0 1 0 0  o )  . B = ( O  1 0 0 0  O O 1 )  

0 0 0 1  0 1 0 0  

0 0 0 1  0 1 0 0  .q0 0 0 1 0  o )  W E = ( '  O O 0) 
0 0 0 1 '  

1 0 0 0  0 0 1 0  

2 One easily verifies that (WL) = (WR)?  = 1 and that WLWR = WRWL = WB.  
As mentioned before, the matrix that describes reflection (WB) is included here for 
reasons of completeness. As in [20], (2.1) can formally be written in 4-vector and 
4N-matrix notation: 

p( t  + 1) = s-y 1 + IC)p(t)  (2.3) 

where 5' is the free streaming operator and Ii' the collision operator, see [20] 

(2.4) R R  IC" = 0,TB + y,LTL + 7" T 

where TX E W x  - 1, with the W defined in (2.2) 
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3. Symmetries 

For later convenience, we again diagonalize the operators in velocity space [17,20]. 
For the present model, it turns out that  we have to define a basis in velocity space, 
that is different from those used in [17] and [20]. The choice of the basis is related 
to the symmetry of the transition matrices. Using the matrices given in (2.2), which 
form a basis, any general reflection-symmetric matrix can be written as 

H = a l + 6 W B + c L W L + c R W R .  (3.1) 

We use a vector notation for the velocities, where IV,) and IVY) are column vectors 
with components (l,O,-1,O) and (O,l,O,-l), respectively, on the basis e l ,  e , ,  e3,  e4, 
defined in figure 1.  Together with 11) = (1 ,1,1,1)  and I2V; - 1) = (1, -1,l,-1) they 
represent a basis of the four-dimensional velocity space in the case that we have the 
full cubic symmetry (see [17] for more details). One can easily verify that IV,) and 
I%), which are eigenvectors of the matrices with the full cubic symmetry [17], do not 
serve as such for the matrices given in (3.1). But, using the commutativity of the 
matrices given in (2.2), we can diagonalize the general reflection symmetric matrix 
H .  One can verify that this is realized by replacing the set {IVJ, IVY)} by the set 
{lV+), IV-)} in the following way: 

IV,) = IVJ + IVY) IV,) = IV,) - IVY). (3.2) 

This transformatiou essentially diagonalizes the anisotropy of the model. Next we 
introduce eigenvectors 

Ma) = 11) MI) = IV,) I+,) = IV-) I$,) = lV2 - V i )  (3.3) 

which are normalized with respect to the (real) inner product 

The eigenvalues of (3.1) corresponding to (3.3) are: 

h o = a + b + c L + c R  
h l = h + = a - b - c  L R  + c  

h , = h _ = a - b + c  L R  - c  

L R  h , = a + b - c  - c .  

(3.5) 

Using this, the collision operators, TX 
eigenvalues, see (2.2): 

!Ux - 1, are seen to have the following 
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The generalization of the Green-Kubo expression for the ‘total’diffusion coefficient 
to the present model is the same as we found in the preceding paper for the chiral 
model, i.e. 

with the vector eigenvalues A;’(= A;’) and A:’(= A;’) of the operator (p(0,O)). 
?(q, z )  is the Fourier-Laplace transformed propagator [(l + z )S  - 1 - I<]-’;  see 
[17,18,20] for details. However, for this model we can introduce ‘partial’ diffusion 
coefficients, that are defined on the basis that diagonalizes the problem: instead of 
taking the diffusion coefficient to be the time derivative of the mean square displace- 
ment (n2 + ni) ,  we define the partial coefficients as time derivatives of ((nz + ny)’) 
and ((nz - n,)’), respectively. This is worked out in detail in appendix 1. The result 
is two partial diffusion coefficients D, and D-: 

1 1  D * - 2A* 4 

The total coefficient is then given by D = $ ( D ,  + D - ) ,  equivalent to (3.7). The 
analogue for the chiral model would be a separation in two opposite ‘chiral’ terms 
of the diffusion coefficient. These quantities cannot be visualized straightforwardly, 
while D, and D- for the mirror model can easily be measured in  a simulation. 

In the subsequent sections we will discuss various approximation schemes to obtain 
the eigenvalues A, and A _ .  

4. Boltzmann approximation 

In the Boltzmann approximation one neglects correlations between collisions, and 
the configuration average reduces to a single-site average. The Boltzmann collision 
operator is then 

K - ( )  O - IC = 4TB + y L T L  + y R T R  (4.1) 

For the ‘total’ diffusion coefficient (3.7) we need the eigenvalues A, and A- of this 
operator, i.e. 

(see (3.6)). We see that for the usual mirror model (p = 0) the A, and A- term are 
just given by the densities of left- and right-oriented mirrors, respectively. For either 
type of mirror, the reflection is in the (l,*l) direction, which is just the basis vector 
corresponding to the & direction that came out of the diagonalization procedure. 
Neglecting correlations between collisions (which is done by taking the Boltzmann 
approximation) thus immediately decouples the two contributions to the diffusion 
coefficient. In the case that we have only one type of mirror (say right-mirrors, see 
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Figure 2. Exactly solvable model 

figure 2), the A+-part of the diffusion coefficient diverges. This corresponds to straight- 
line motion in a diagonal direction. The A- component is then eractly given by the 
Boltzmann result, because returns are impossible and all collisions are uncorrelated, 
making the Boltzmanu approximation exact. 

In the Boltzmann approximation the diffusion coefficient D = i ( D +  + D - )  is in 
general given by 

1 
4 '  

_ _  1 ZP + yL+ YR Do = - 
8 P2 + P(yL + yR) + rLyR (4.3) 

For the case P =  0 , yR = yL = i c  this yields D = $c - $ [ Z ] .  

5. Ring and repeated-ring approximat ion  

We note the following properties of deterministic lattice Lorentz gases models. In the 
mirror model (without reflections) a particle can never retrace part of its trajectory 
in the opposite direction, a opposed to the chiral model. Therefore a particle can 
return at  most twice to the same site before being trapped in a periodic orbit, whereas 
in  the chiral model this can happen four times [19]. We recall from [17, 181 that for 
the stochastic model no periodic orbits exist, and the trajectory between subsequent 
repeated returns more likely consists of uncorrelated collision sequences. This makes 
the dynamics summed by the RRA and the EMA more appropriate for the continu- 
ous Lorentz gas, hopping models and the ballistic lattice Lorentz gas with stochastic 
collision rules, than for the deterministic lattice models. 

The formulation of the ring and repeated-ring approximations (RA and RRA) and 
their self-consistent counterparts for the mirror model is analogous to what we have 
done for the chiral model of 1201, the preceding paper, so we do not have to repeat the 
formalism here. 

For the mirror model we do not have an exact solution for the completely filled 
lattice. As the ring integral depends both on the A, and the A- eigenvalue, the 
ring and repeated-ring approximations already destroy the decoupling of the + and - 
contributions that occurs in the Boltzmann approximation. 

The approximations discussed before are obtained by making specific choices for 
the At = 4: - b,, where the k: are the eigenvalues of the Boltzmann collision op- 
erator (4.1), and b, are those for the collision diagrams, explicitly given in operator 
expressions in the preceding paper [ZO]. 
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6. Effective medium approximat ion  

The effective medium approximation, which has been applied successfully to ran- 
dom resistor networks, hopping models and the stochastic lattice Lorentz gas 
[17,18,32,36,37], has  been generalized to a model with more types of different scat- 
terers in [20]. Most of the formalism developed there, can be copied for the mirror 
model. In general the effective medium condition 

IC, - cTe 
1 - R(K, - cTe) ) = O  

yields a fourth-order equation if we consider the eigenvalues of the different operators 
that occur in the equation, see section 3. However, we will see that, for the specific 
form of the eigenvectors, the EMA equation will now be two orders lower, as will be 
explained later. So we have quadratic equations for the effective collision operator 
eigenvalues A.  The X are real. 

For the mirror model the EMA is determined by the coupled equations for the 
ring integral (A2.9) and the eigenvalue version of the EMA.condition (6.1). The latter 
yields the eigenvalues X1 of A = -cTe, that can be substituted in (A2.9), through 
(A2.10) and (A2,11), to calculate the corresponding eigenvalues of the ring operator. 
For the evaluation of the ring integral we refer to appendix 2, here we first discuss the 
EMA condition. 

First, we have a closer look a t  the eigenvalues of the collision operators. In terms 
of the eigenvalues for the mirror model, the EMA equation (6.1) is written explicitly 
z* - 

-ctf -2 - ct; -2 - ct; -ct; 
+ynl-r , ( -c t ; )  = o  

+ P I -  T1(-2 - .t;) + yL 1 - T l ( - z  - Ct;) a 
1 - r,(-ct;) 

(6.2) 
for e = 2, and 

-et; -ct; -2 - ct; - 2  - ct; 
a = o  

1 - r3(-ctj) + '1 - r3(-ct;) + yL 1 - r3(-2 - ct;) + y R 1  - r3(-2 - ctj)  
for e = 3. Here we substituted in the EMA equation the explicit eigenvalues of the 
collision operators TX given in (3.6). We see that the denominators always come in 
pairs. This lowers the order of the equations by two. This simplification does not 
occur for the chiral model of [20]. 

The diffusion coefficient is given by (3.7) with the present eigenvalues A, = -et;, 
X- = -et;, or written as the average of D ,  and D - ,  given in (3.8). 

From the resulting eigenvalues t; of Te in any of the approximations one can 
calculate effective densities for the different types of scatterers. The matrix equation 

(6.3) R e ~ R  c T  = p'TB + yLeTL + y 

yields 

p' = -;C(t; +t;  - t j )  
?Le = ;C(-t; + t q  -t;) 

pe= ;c(t;-t;-t;) 
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7. Other mirror models 

Here we add to the mirror model the possibility of flipping and transmission. This 
is interesting for studying the influence of stochastic effects and.effects that relate to 
interaction between the moving particles. We will restrict ourselves to the models 
that do not have reflectors, i.e. p = 0. First we study the model in which flipping of 
the mirror occurs with probability one every time it suffers a collision with a particle. 
This results in interactions between the moving particles, while the theory we have 
presented so far concerns essentially only a single moving particle. We can modify the 
theory to deal with the latter. The collision sequences contain alt,ernatingly right- and 
left-oriented mirrors; in between, the moving particles perform rings. These sequences 
can be summed, yielding the repeated-ring approximation, for which the collision 
diagrams are written as 

BERA = yL [TRRoTL + TLRoTRRoTL] (1  - R'TRR0TL)-I 

+ yR [TLRnTR + TREioTLRoTR] ( 1  - R0TLRoTR)-'.  (7.1) 

Here we have used R', the ring integral over the Boltsmann propagator. We have left 
out reflectors, but in principle y" and yL do not have to be the same. We work this out 
using the explicit eigenvalues of the collision operators TL and TR, given in (3.6). The 
result is that for e = 1 and P = 2 we have BERA = 0, and consequently the diffusion 
coefficient in RRA coincides with the Boltzmann value. The tensor ( e  = 3) eigenvalue 
is different, and involves the eigenvalue of the ring operator, so i t  may play a role in 
a self-consistent scheme. The most important self-consistent approximation scheme is 
the E M A  equation, which we can write down for the flipping mirror model with one 
moving particle. Instead of repeated visits to alternatingly left- and right-mirrors, we 
visit repeatedly fluctuations 6TL TR - C F .  In fact one splits 
up the repeated series of the usual EMA into an even and an odd subseries, and makes 
the two series alternating. Then the EMA equation for the flipping mirror model is 

,+,=Pj(i - R(-cy j j - :  

TL - cTe and 6TR 

+ yL[6TRR6TL + 6TLR6TRR6TL](1 - R6TRR6TL)-' 

+ yR[6TLR6TR + 6TRR6TLR6TR](l - R6TLR6TR)- = 0.  (7.2) 
1 

Here, R is the self-consistent ring integral. The result of this exercise is that, also 
in the context of the iuii EMA ior the nipping mirror modei, the ditfuslon coefTicient 
coincides with the Boltzmann result. Investigation of this wi th  the explicit eigenvalues 
(3.6) shows that this does not follow from the EMA equation itself: the iteration with 
the ring integral is needed to obtain this numerical result. This indicates cancellations 
of diagrams, similar to what we obtained for the stochastic lattice Lorentz gas with 
only left-right collisions, see [17]. We conclude that accounting for ring and nated- 
ring type of events does not yieid deviations from Boitzmann. 

Another model is one in which the mirrors flip orientation only with a certain 
probability, say p A .  With some algebra we can find expressions analogous to (7.1) and 
(7.2). For this model, simulations (see section 8) show that already for small non-zero 
flip probabilities the diffusion coefficient differs substantially from the fixed-mirror 
value [21]. The former is smaller and the latter is larger than the Boltzmann value, 
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as we discuss in section 8?$efore commenting on this, we also introduce the mirror 
model with transmission probability p t r .  

Both introduction of flipping and transmission are intuitively expected to yield 
better agreement with Boltzmann, as their stochastic properties have a randomizing 
effect. For small values of p f l  and p t r ,  however, we observe that the deviations from 
Boltzmann do not decrease, but merely change sign. Some typical trajectories that 
may be involved are shown in  figure 3. They are orbiting trajectories. We have 
only drawn the mirrors that we focus on; the actual form of the remaining parts of 
the trajectories is not relevant. First we discuss the case with a small transmission 
probability. For the trajectories of figure 3(a) with fixed mirrors, there are positive 
correlations inside each orbit at either side of the mirror. As a particle leaks through 
the mirror, which for low ptl  is assumed to occur only once on the timescale we 
consider, it will not return to previously visited sites, and the correlations are lost. 
However, the trajectory in figure 3 ( b )  hits both sides of the mirror. If the particle 
leaks through here, it will travel on the sanie trajectory in the opposite direction, and 
the contributions from correlations get a negative sign. Further, in figure 3(c)  we have 
drawn a more complicated orbiting trajectory, for which leaking through only means 
that the particle ‘skips’ a part of its traject,ory: the sign of the correlation remains 
positive 

4 b) 

Figure 3. Typical orbiting trajeclories. 

Similar arguments apply for the case of flipping probability p A ,  where the mirror 
is assumed to flip only once. In figure 3(a), the two orbits will be combined to a 
longer orbit. In figure 3(6) flipping of the mirror will split up the trajectory. Both 
will occur at the cost of positive correlation. In the trajectory of figure 3(c) ,  however, 
flipping of the mirror will send the particle in the opposite direction, and thus the sign 
of the correlation contributions from these orbits is changed. As the trajectories of 
figure 3(c) are more complicated, their effect will be less than in the case of a small 
transmission probability. For further remarks we refer the reader to section 8. 

8. Results and discussion 

We calculate the diffusion coefficient for the mirror model using several approximation 
schemes. Some of them are standardly used in kinetic theory; in addition, we also 
consider the effective medium approximation (EMA).  We choose some typical sets of 
parameters where, in the spirit of the original model, we usually take = 0. Later on, 
we will briefly report on cases with /3 # 0. For the present model, the EMA equations 
(6.2) are only quadratic, in spite of the four terms in occurring in the general EMA 
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equation (6.1). The ring integral, however, has in general the complicated form (A2.9). 
We have computed it numerically. 

Nevertheless, there exists a subclass of models for which the ring integral does 
have the same form as for the stochastic and the  chiral model of [17,20], respectively; 
for the resulting analytic expression we refer to those papers. The class for which this 
is the case is that of isotropic models, i.e. with equal densities of left and right mirrors. 
The elements (3.8) of the diffusion tensor are then equal: D, = D- = D. According 
to  (4.2) we have A, = A,, and we conclude from (A2.11) that the additional term in 
the denominator vanishes, leaving the denominator symmetric for x - -2, causing 
the (antisymmetric) term with C, in the numerator to vanish in the integration, and 
we recover the integral we calculated analytically in [17]. However, this does not imply 
that the results will be the same as for the stochastic model (where we always have 
yL = rR), or the chiral model of [20] with yL = yR, because the collision operators 
entering in the EMA condition (6.2) are different from the Ti and T" in the other 
models. The fact that we have an analytical result for the ring integral, together with 
quadratic EMA equations for the eigenvalues, makes the calculation quite feasible. 

The most obvious isotropic model is that with 0 = 0 and yL = yR = 4 c  for e 
from 0 to  1 (full lattice). The results from the present kinetic theory method are 
displayed in figure 4. I t  shows that all ring approximations and the EMA are below 
the Boltzmann values; the EMA remains below Boltzmann for e = 1 ,  while the ring 
and repeated-ring approximations bend back to the Boltzmann value as the full lattice 
is approached 

1 . 0  
y b  = yl = ic 

R ~~~~~ 

0 fired n i r r o r r  
- - RR 
- BMA 

0 flippiaq n i r r m ,  

0 . 6  0 flipping. 1 w t i t l e  _ _ _ _ _  Boltrlanp 

.--.-.- 0.4 \ 
0 . 2  

' t + + 4 4 4 , ,  
---__ ---__ 

O ' *  I h & k I  I . .  1 , , , , , , , -;,-. - 
a 

0.0 
0 . 0  0 . 2  0.4 0 . 6  o. a 1. 0 

C 
Figure 4. Mirror model for p = 0 and yL = yR = f c .  Simulations from [23]. 

For this model we also performed computer simulations, which agree within error 
bars with the much more extensive computer simulations performed by Kong and CO- 
hen [23]; the latter are displayed in figure 4 .  These simulations confirm the existence of 
a positive deviation from the Boltzmann diffusion coefficient a t  intermediate densities 
[23]. This effect was only vaguely observable in the early simulations [22]. The positive 
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deviation is peculiar, because usually ring collisions, as they refer to returns to the 
same site, with on the average a velocity v,(t) opposite to v,(O), yield a negative con- 
tribution to the VACF and the diffusion coefficient. Usually, for low densities the ring 
collisions are the first correction to the Boltzmann value. The stocllastic model of [17] 
fits this picture. The remarkable positive deviation in the mirror model is explained 
in [23] in a qualitative manner as to originate from local fluctuations in the densities 
of mirrors: an excess of one type induces staircase-like behaviour over t,he region of 
the fluctuation. It is similar to the rattling behaviour between two nearby trees in the 
Ehrenfest wind-tree model [33]. I t  is further argued that this effect is responsible for 
the mere existence of diffusion in this model. Note the peculiarity that for the full 
lattice, the simulation result lies below the Boltzmann value. 

The fluctuations of the densities of left and right mirrors are assumed to have 
much less effect in the case of the flippin,g mirror model: upon being hit by a moving 
particle, the mirror flips orientation. This introduces interactions between the moving 
particles, an effect that is definitely not accounted for by the present kinetic theory, see 
section 7.  However, the main effect will be a randomization of the mirror orientation. 
In general, flipping of the mirrors causes the moving particle(s) to randomize the mirror 
orientations. Consequently, the geometrical constraint that a moving particle can only 
return twice t o  its point of origin, with only uncorrelated collisions in between, is lifted. 
The model with flipping mirrors also has much better ergodic properties: simulations 
seem to indicate that phase space consists essentially of a single orbit [22,23]. 

Simulations of this model show a negative deviation from the Boltzmann value 
for c np to c = 0.85. In spite of the inapplicability of the present analysis for the 
fixed mirror model to the flipping mirror model, the EMA and the ring approximations 
seem to describe the simulation data  quite well over a reasonable range of densities, 
as we show in figure 4. Note that here, only for the almost full lattice, the simulations 
exceed Boltzmann, contrary to what we observe for the fixed mirror case. 

For the (fixed) mirror model with yL = yn = i c  the deviations from Boltzmann are 
most prominent a t  densities of c = 0.5-0.9. In order to investigate these peculiarities a t  
intermediate densities, we study the model with tunable parameters, namely flipping 
and transmission probabilities. In section 7 we introduced these models and discussed 
them by considering typical trajectories that may be responsible for the effects a t  low 
probabilities. The collision sequences of figure 3 are  so-called ‘orbiting’ trajectories. 
Our kinetic theory (including the application t,o flipping mirrors i n  section 7) does 
not account for them, as it only includes (the whole set of) ring and nested-ring 
diagrams [18]. In figure 5 we present the simulation results for the mirror model 
with transmission probability, In order to have a constant Boltzmann value we kept 
c* E e(1 - p , )  fixed; then D,, = (ZC*)-’ - a. We indeed observe a phase transition 
for ptr = 0. Moreover, thz deviation from Boltzmann seems just to change sign with 
respect to the fixed mirror case; the density considered is c = 0.7. For other densities 
the competition between the different contributions, see figure 3, may give different 
results. In figure 6 we plot the simulations for the flipping mirror model as a function 
of the flip probability p,. In figure G(a) there is only one moving particle present 
in the system. Here we find the same features, only less prominent. This difference 
between these two models is in line with our low-probability remarks in section 7 
that for the flipping mirror model the effect is caused by the more complicated, and 
thus less probable trajectories of figure 3(c), while for the transmission model the 
orbits of figure 3(b) are important. Finally, in figure G(b), we present the data for the 
flipping mirror model with many particles (typically 1500 in a 500x500 lattice). Here, 
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the interactions clearly randomize the dynamics, and we find Boltzmann diffusion 
coefficients already for small flipping probabilities [21]. This reflects the fundamental 
difference between the model with a single moving particle and the one with many 
particles, which could not  clearly be concluded from the results at p,, = 1, see figure 4. 
We have also run simulations for other densities, i.e. c = 0.4,0.5,0.6,0.8,0.9,0.95 and 
1.00. The features for c < 1.0 and small flipping probabilities are qualitatively the 
same. It  may be  tha t  for high flipping probability, entirely different effects play a role 
[25]. We note tha t  the moving particle needs to 'see' tha t  there is a transmission or 
flipping probability. In order to obtain the  full eRect, we performed the  p,, = 0.01 and 
ptp = 0.01 simulations for t up to 3000 units, inst,ead o f t  = 1000. In order to make 
the error bars of the p = 0 and p = 1 da ta  visible, we plotted the da ta  a little inside 
the frame. 

0 . 4 5  c' : 0.70 

0.10 1 
> 
v 

0.30 

o'25 1' 
0.20 

0.0 0 . 2  0 . 4  0.6 0 . 8  1.0 

transmission prob. ptr 
Figure 5 .  Results lor min-ovs wil l ,  1.rmmission probability, at mirror density C *  = 
0.7. 

We continue with a brief discussion of (fixed-mirror) models with reflector sites as 
well as mirror sites. Here, j f 0, hut  still y L  = yR. So these models are isotropic 
and thus involve ring integrals t ha t  can be calculated analytically. Preliminary re- 
sults calculated in effective medium approximation (EMA) indicate that the diffusion 
coefficient practically vanishes as soon as  the scatterer density is non-zero. This cor- 
responds to the notion tha t  there is no diffusioii i i i  tliis case, as the average length 
of the trajectory is proportional to j- '  and the particle simply moves up and down 
between the endpoints, which contain reflectors. The  probability for the particle to 
traverse the lattice (of linear size L - 1000) without being trapped in such an orbit, 
is thus of the order of exp(-PL). Although t,lie simulations were unahle to confirm 
or exclude whether diffusion does exist a t  largc times in the chiral and in the mirror 
model, here the reflectors destroy aiiy behaviour that remot.ely looks like diffusion. 
I t  is surprising that even i n  this extreme case the Eh{,\ is capable of explaining the 
absence of diffusion in the presence of reflectors, a t  least in a qualitative sense. For 



0 . 2 5  4 l i  
0. 20 

0.0 0 . 1  0 . 2  0.3 0.4 0 . 5  0.6 0 . 7  0.8 0.9 1 . 0  0.0 0 . 1  0 . 2  0.3 0.4 0 . 5  0.6 0 . 7  0 . 8  U , $  1.0 

f l i p  prob. pfI f l i p  prob. pt, 

Figure 6. Results for mirrors with flipping probability, at mirror density c = 0.7: 
(a) 1 moving particle; ( b )  many moving particles, interacting through mirrors. 

this case the breakdown of the Bolt,zinann equation is obvious. A short-time simu- 
lation with parameter values = O.lc, yL = 0 . 4 5 ~  and yR = 0 . 4 5 ~  yields diffusion 
coefficients of the order of 0.1 and 0.02 for c values of 0.1 and 0.2, respectively, which 
is indeed practically zero. We used only 200 time steps. It is not expected that this 
qualitative feature depends on whether we have an isotropic model (yL = yR) or an 
anisotropic model (yL # yR). 

For the general anisotropic case, i.e. fixed mirrors with yL # yR and no restric- 
tions on p, the ring integral has the general form (A2,9), which we evaluated nnmer- 
ically. However, while in the cases described before the iteration of the EMA eqna- 
tions converged sufficiently rapidly, we did not obtain convergence for any deviation 
from isotropy. Numerical methods do not yield solutions, indicating that the effective 
medium approximation does not work out well for this model. The same is the case for 
the self-consistent ring and repeated-ring a,pproximations (SRA and SRRA). See also 
[18] for similar technical diEcnltim. Of course, i t  is possible to calculate the Boltz- 
mann approximation and the ring and repeat,ed-ring approximation (RA and RRA), 
as they are straightforward calculations. The results for the case yL = i c ,  yR = Zc 
are displayed in figure 7, together with simulat,ion da,ta. Our simulations were carried 
out with lattices of np to lO0Ox 1000 sites and periodic boundary conditions. They 
exhibit qualitatively the same behaviour as the isotropic case, for both elements of 
the (diagonalized) diffusion tensor. We observe that the data for the larger of the 
two elements lie farther away from the Boltzmann prediction than those for the lower. 
This is consistent with our earlier remarks (section 4) concerning the model with only 
one t y p e  of mirrors. One element of the diffusion tensor, corresponding to diffusion in 
the diagonal direction, diverges becausc the particle has a uniform velocity parallel, 
say, to the right mirrors, in the (1,1) direction, and the mean square displacement 
((ns + nY)') grows as 1'. In the perpelldicular (1, 1) direction, the mean square 
displacement ((nz - ny)') II 2Dt as t i w with D eract ly  given by the Boltzmann 
equation (4.3), because correlated collisions are absent i n  this model. We also see that 
it takes time for the particles to explore the deviations from Boltzmann; this is seen 
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most clearly by the difference in the t = 200 data and the 1 = 2000 data for the partial 
diffusion coefficient D, 

1 . 0  

y L  i $, Y R  = + 
0 . 8  

- I - ."" 
- - - E R  . . ~ ."*" 

0.6 

0 . 2  

0. 0 0. 2 0 . 4  0.6 0. 8 I .  0 

C 

Figure 7.  Anisotropic mirror model wi lh  yL z $ c ,  yK = 2 c .  Simulation results for 
D at or time t .  

An interesting property of the fixed mirror model without reflectors is that diffusion 
still exists a t  high densities. This has beeii shown for a completely filled lattice with 
yL = 7R = by mapping it on two-dimensional bond percolation [34]. It is also 
possible to calculate the asymptotic long-time form of the probability distribution 
for displacements. It turns out that the second moment of this distribution grows 
linearly with time, allowing the definition of a diffusion coefficient by using the Einstein 
relation. On the other hand, higher moments no longer show Gaussian behaviour, 
implying that the probability distribution does not satisfy Fick's diffusion equation. 
Although very slowly, the kurtosis, defined BS li = ((z4) - 3 ( z 2 ) 2 ) / ( z 2 ) 2 ,  grows with 
time. In the Gaussian case the kurtosis goes to zero for long times. Kong and Cohen 
[25] have performed extensive computer simulations of the mirror model, and analysed 
the anomalous diffusion of the model in great detail. They find that for the isotropic 
model (rL = 7R = i c )  the kurtosis increases from zero a t  low densities to values of 
1.27k0.16, 1.66f0.13 and 3.6f0.2 for c values of 0.9, 0.95 and 1.0, respectively. The 
simulations were run  for 4000 mean free times tml - c- ' .  Kinetic theory methods, 
able to explain this peculiar behaviour, are not. available. 

In summary we make the following points. 
(i) We have seen that the present kinetic t,heory (ring approximations and EMA), 

and also the molecular chacs assumption of the Boltzmann equation, are unable to 
explain the intriguing results for the mirror model with fized mirrors. 

(ii) The present kinetic theory analysis for the p i p p i n g  mirror model yields no 
deviations from the Boltzmann diffusion coefficient, neither in the repeated-ring ap- 
proximation nor in the full EMA. This does 1101. agree with the simulation data. 

(iii) Unexpectedly, however, our EMA results for f ized mirrors seem to describe the 
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simulation data for the f l i p p i n g  mirrors of [23] quite well over a large range of densities 

(iv) Our study of small flipping and transniission probabilities provides arguments 
that  the deviations of kinetic theory from the simulations are caused by orbiting 
collision sequences. (See (17,16,20] and figure 3.) They are more important in deter- 
ministic than in stochastic models. Unfortnnat,ely, they are not accounted for in the 
kinetic theory. It would be of interest to analyse theoretically the contributions from 
the orbiting co!!iion seqcences. 

(v) In general, flipping and transmission probability have a randomizing effect, 
yielding Boltzmann diffusion coefficients. However, although this is indeed the case for 
intermediate flipping or transmission probabilities (p f l ,p , ,  = 0.4 - 0.6), i t  is definitely 
not true for small transmission probabilities or small flipping probabilities in the case 
of one moving particle. 

(~i)  For the fixed mirror mode! wi?!iou? reflectors diffusion ski!! exists at high 
densities [34]. The second moment of the probability distribution grows linearly with 
time, allowing the definition of a diffusion coefficient by using the Einstein relation. 

(vii) On the other hand, higher moments 110 longer show Gaussian behaviour, 
implying that the probability distributioii does not satisfy Fick's diffusion equation. 
Also this is an area for which further theoretical investigations would be of interest. 

(c 5 0.9). 
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A p p e n d i x  1. Green-Kubo formula for  partial diffusion 

This appendix sketches the derivation of the Green-Kubo formula for the 'partial' 
diffusion coefficients, as introduced at  the end of section 2. Writing the mean square 
displacement for two dimensions as 

(4 + "J 2 - 1  - 2Knc + n,)? + (nr - 71J7 ( A l . l )  

we define the (time-dependent) partial d i f f u s i o ~ ~  coefficients D+(t) and D- (t) by 

4D+(t) = A,((n,(t) f ny(t))'). (A1.2) 

,\ =,. App'yLup LllC Lillllt: "lllt-Lt.11CCi iiecaii that for 
and using the fact that 

isotropic caSe we iiave 2o = A A . . - I . . ! . .  ~. , I  . L! ._.̂  3:s ̂_ ^ _ ^ ^  

(A1.3) 
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(A1.4) 

For D- the derivation is similar. Finally we have, using time reversal symmetry and 
(U:(.)) = f (in two dimensionsj: 

(A1.6) 

where 

u*(t) z u,(t) & u,(t). (A1.7) 

With these definitions of D, and D.. the total diffusion coefficient is then found to 
be 

1 "  DE (D+ + D-) = 2 c [ ( ~ , ( t ) u , ( O ) )  + (u , ( t )u , (O) ) ]  - (A1.8) 
{=U 

just  as it should be .  Used here is tha t  ( u , ( t ) u , ( O ) )  = 0, etc 

Appendix 2. Ring integral 

For the calculation of the  transition probabilities, (i.e. the  cfective densities of the 
different scatterers) in the various approximations, we restrict ourselves to the z = 0 
case, as we a im for the static diffusion coeficient. We evaluate the eigenvalues of the 
ring operator 

(A2.1) 
- 1  

R ( Z  = 0) = 1 ( e ' "  - I - ri ' (z = 0)) . 

They are: 

with A ,  satisfying 

(A2.2) 

(A2.3) 
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The matrix elements E,,, are defined as [I71 

B,,, = (&L.l(e'9' - l)-'I&). (A2.4) 

The effective collision matrix -cTe = A is decomposed into projection operators P, 
on the eigenspaces (3.3) of the reflection syinmetric operator: 

-CY = A = Alpl + A,P, + A3P3 (A2.5) 

where 

Pt = IdJc)(+el, (A2.6) 

The values or expressions to be substituted for the A will correspond to the actual 
approximation (RA, RRA, SRA, SRRA or EMA) that we wish to study. The equations 
for the components of the vector A, are forinally the same as for the chiral model that  
we studied in [ZO]: 

(A2.7) 
1 + AlBIl XZBl, 

/.I, I 3  \ 
4B21 1 + A 2 4 2  

1 n  
\ "lY31 , q y 3 2  !+A3E,3, \ \ * 3 i " e i /  \ - , e /  

We find for the matrix elements E,,,: 

B,, = B,, = 0 1 E,, = B,, = = -a (A2.8) 
E,, = B,, = -ih, + ihy E,, = E,, = -ih, - ih Y 

with ha sinq,/(l - c0sqO). The (4LlIAc) can now be calculated. However, after 
carrying out the algebra one concludes that, for this model, the ring integral cannot 
he written in the familiar form that one finds for the stochastic inodel of [17] or the 
chiral model of [20]. The cross terms, i.e. some sinq, t,erms, do not drop out. The 
result is: 

A, + lGB,(h: + h ; )  + lFCeh,h, 
E + lGF(h2 + h i )  + lGCh,h, (A2.9) 

for e = 1 , 2 , 3 .  The coefficients A,,  E,, E and F are given by: 

AI = -$( l  - $&)(I - ;A3) 
A, = - + ( l  - +Al ) ( l  - 1 A  ) 

B,  = &A,(! - A,) 
E ,  = & A 3 ( '  - A,) 

(A2.10) 2 3  

A ,  = -$(l - ; A , ) ( l  - :A?) U, = $Al + A, - A,&) 
F = &A3(A1 + A ?  - A I A 2 ) .  E = ( 1  - $A,)(I - ;"?);I - $ A 3 )  

which are the same as in [ZO], but now there is also 

c, = -+A, C, = + A 3  C, = Q ( A ,  - A,) G = a A 3 ( A ,  - A , ) .  (A2.11) 

Because of these extra terms (especially in the denominator), the ring integral is 
different from the one we calculated analytically in [17]. Therefore the integral wits 
evaluated numerically. 
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