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Abstract. Asamodel for diffusion, alattice version of the Lorentz gas is studied, us-
ing specular collision rules. A previously developed theory, containing the molecular
chaos approximation, several ring approximations and the effective medium approx-
imation (EMA}, is applied and compared with simulations. The correction to the
Boltzmann equation result, resulting from effective medinm approximation (EMA)
is opposite to the simulation results. This indicates that other diagrams than ring
diagrams should be considered, which is peculiar if one considers the successes of the
EMA for other models. This is mvestlgated by using variants of the model. The dif-
fusion tensor is In general non-isotropic; the corresponding features are gqualitatively
described by theory.

1. Introduction

In the widely studied class of models known as cellular automata (CA) [1-6], a subclass
consists of lattice versions of the Lorentz gas. The classical Lorentz gas has been used
extensively for studying diffusion [7-14]. The model is defined by a random static
array of scatterers, in which independent particles move ballistically in between two
collisions with scatterers. The scatterers may have different shapes, such as hard
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latlice version has scatterers that reside on the sites of a lattice, in a random but
fixed configuration. The analogue of different shapes of the scatterers are here the
different collision rules that can be chosen to describe the interaction of the moving
particles with the scatterers. In previous papers we have used probabilities to describe

the outcome of the collisions [15-18]. However, it may be preferable to consider
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50, we dlSCUSSEd the ch:ml model {19], for which we refer to the preceding paper [20].
In this model a scatterer rotates the direction of the velocity of the incoming particle
over an angle that depends on the type of the scatterer. The theory that we developed
to describe the model with stochastic collision rules was generalized successfully to the
chiral model. However, some effects that seem to arise from the deterministic character
result in differences between theory and computer simulations for the chiral model.

Therefore we want to study a different choice of the collision rules, in order to
gain more insight into the dependence of the results on the specific choice of the
deterministic collision rules.

In this paper we will apply the theory to the mirror model of Ruijgrok and Cohen
[22]. This model is known to show peculiar behaviour, as results from extensive
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808 G A van Velzen

computer simulations indicate [23-25]. The behaviour is rather different from what
one would expect from one’s knowledge of the stochastic model of [17} or the chiral
model of [20). Because of the deterministic collision rules, the path of an individual
ballistically moving particle is completely determined once the scatterer configuration,
the starting position of the particle and its initial velocity are known. The model is
defined in two dimensions, but one may consider higher-dimensional generalizations,
as we will mention later.

The outcome of a collision of a moving particle with a scatterer is completely
determined by the direction of the incident particle and the type of scatterer. As in
the chiral model, the direction is turned over 90°, but there is an essential difference
in the way this depends on the scatterer type: the scattering rules are such that we
can think of the scatterers as mirrors that are placed at random on the lattice sites.
The orientation of the mirrors makes a 45° angle with the lattice axes. There are two
types of mirrors (see figure 1), and originally the model did not contain reflectors [22].
For the subsequent analysis it is, however, straightforward to include reflections. For
reasons of completeness it is even necessary to do so: our self-consistent calculations
will in general generate a matrix of effective transition rates that has a non-zero entry
for the reflection probability.

174 2

€1

————

£4

W

Figure 1. Mirror model.

The particles may be (will be) trapped in closed orbits, of which the length dis-
tribution has been investigated {22]. For an illustration we refer to figure 1, where
we show an example of a particle trajectory. A justification for omitting reflectors in
actual simulations is that the moving particle will retrace its path completely once a
reflector is hit; a pathological one-dimensional feature that one may wish to avoid.

As the scattering direction is ‘attached’ to the lattice, anisotropy will be observed
if the densities of left- and right-oriented mirrors are unequal, and in general the
elements of the diagonalized diffusion tensor are not equal (see later).

A generalization to three dimensions can be constructed in a straightforward man-
ner [26).

For the two-dimensional model, extensive computer simulations have been carried
out. The majority of them concern the diffusion coefficient, defined as the long-time
limit of the time-dependent diffusion coefficient D(t) = 18,(z?), i.e. one basically
locks at the second moment of the distribution of the moving particles. Although
early simulations could still be explained by the Boltzmann approximation [22], later
simulations with higher statistics definitely demonstrated a positive deviation from
Boltzmann [23-25]. This is remarkable, because in Lorentz gases of the standard type,
like the continuous Lorentz gases [12, 13], hopping models {27-32], and the stochastic
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lattice Lorentz gas of [17)], one usually finds negative corrections to Boltzmann. These
come from ring collisions, giving rise to negative contributions to the VACF.

In contrast with Lorentz gases, fluids have ring integrals that lead to positive
velocity correlations {phenomenologically interpreted in terms of vortex flow), and
the experimental and simulation results for the diffusion coeflicient are always larger
than what the Boltzmann approximation predicts.

For the present model with equal numbers of right and left mirrors, Kong and
Cohen (23] were able to explain the sign, but not the magnitude of this deviation by
an intuitive argument in terms of local fluctuations of excesses of right mirrors or of
left mirrors. A similar effect was studied in the ‘pipeline’-like trajectories between
two nearby ‘trees’ in the Ehrenfest wind-tree model [33]. Both types of fluctuations
lead to an increase of the diffusion coefficient. Unfortunately it is not obvious how to
relate these fluctuations to any special sequence of correlated collisions {17, 18], and
how to incorporate them in a kinetic theory analysis. Therefore it is worthwhile to
investigate the mirror model with the help of our approximate kinetic equations. In
order to investigate the origin of the deviations, we also performed simulations with
transmitting and flipping mirrors.

A variant of the mirror model (also studied in [22] and [23]) is one in which the
mirrors flip orientation upon being hit by a moving particle. In the case that we have
more than one moving particle in the system (diffusion is usually pictured in terms of
the spreading of a cloud of particles), this clearly introduces interactions between the
moving particles and strictly speaking the model cannot be considered as a Lorentz gas
of non-interacting moving particles. However, if one considers only one moving particle
the model does have the characteristics of a Lorentz gas. In addition, the distribution
function of the left and right mirrors tends to a fifty—fifty distribution, due to collisions
with the moving particle. Computer simuiations show that the diffusion coefficient,
in the case that there is only one particle present in the system, surprisingly coincides
with the results for more moving particles [23]. The interaction with the flipping
mirrors mainly randomizes the scatterings, and thus increases the validity of kinetic
theory arguments. We wiil consider variants of the mirror model to investigate this
further.

We mention some other properties of the model. An interesting feature is that
the probability distribution of displacements is non-Gausstan, which is reflected in the
fourth moment of the probability distribution [23]. Therefore the probability distri-
bution of displacements does not satisfy a diffusion equation. Finally, the full lattice
with equal amounts of the two types of mirrors (¥ = y® = £} can be mapped onto
the bond percolation model at criticality, and the critical exponents of the moments
can be calculated [34,23].

Before starting the analysis in the next sections, we introduce some notation. A
lattice site is either empty (with probability & = 1— ¢), or contains one of the three
types of scatterers: left-mirrors (with probability 4%}, right-mirrors (with probability
vR) or reflectors (with probability #). The probabilities are normalized by

a+ B+ 4R =1 (1.1)
By introducing the concentration ¢ = 1 — o of occupied sites, we have also
B4+t +R = (1.2)

We can write down the generalization of the theory of [17,18], derived in detail
in [20]. Where necessary we will repeat the formulae we need, without giving the
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detailed explanation. We will give the Chapman-Kolmogorov equation for this model
(section 2) and consider the symmetry group of the collision operators (section 3). The
Boltzmann approximation (section 4), the ring and repeated-ring approximations and
their corresponding self-consistent versions (section 5) and the full effective medium
approximation (EMA, section 6) will be analysed. We will discuss flipping and trans-
mission in section 7. The results will be compared with compiter simulations. We
will also consider a case that has a non-isotropic diffusion tensor.

2. Chapman-Kolmogorov equation

We will discuss the two-dimensional version of the mirror imodel. The equation of
motion is the Chapman-Kolmogorov (CK) equation, which can be written down after
assigning to every lattice site n the stochastic variables a,, f§,, 7% and ‘rR. Each of
them can take on the values 0 or 1, subject to the constraint e, + 3, + 7n + 7n =1:
for given n only one of them is diﬂ"erent from zero. The CK equation is then given by

[17,35)
pn+e,it+1)=0o.p(nit)+48, Z P"JJ)

Z p(n Jit +Tn Z n,j,t) (2‘1)

where the transition matrices for the velocities, defined on the basis {e,, e,, €3, €,}
of figure 1, are

1 00 0 00 10
. o100 s (o0 01
WE=1=149 061 o0 WE=110 00
00 0 1 0100

(22)
000 1 01 0 0
L {0010 {1000
E=10 1 0 0 =10 0 0 1
1000 0010

One easily verifies that (WL)2 = (WR) 1 and that WLWR = WRWL = wB,
As mentioned before, the matrix that describes reflection (W8) is included here for
reasons of completeness. As in [20], (2.1) can formally be written in 4-vector and
4N-matrix notation:

p(t+ 1) = S~ (14 K)p(t) (2.3)
where S is the free streaming operator and K the collision operator, see [20].
K, = 8,78 + 4L 4 4BTR (2.4)

where TX = WX — 1, with the W defined in (2.2).
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3. Symmetries

For later convenience, we again diagonalize the operators in velocity space [17,20)].
For the present model, it turns out that we have to define a basis in velocity space,
that is different from those used in [17] and [20]. The choice of the basis is related
to the symmetry of the transition matrices. Using the matrices given in (2.2), which
form a basis, any general reflection-symmetric matrix can be written as

H=al + WP 4 Wl 4 AWE, (3.1)

We use a vector notation for the velocities, where |V} and [V, ) are column vectors
with components (1,0,—1,0) and (0, 1,0, 1), respectively, on the basis ¢, ¢,, €3, €4,
defined in figure 1. Together with |1} = (1,1,1,1} and |2V? — 1) = (1, -1,1,—1) they
represent a basis of the four-dimensional velocity space in the case that we have the
full cubic symmetry (see [17] for more details). One can easily verify that [V,) and
|V, ), which are eigenvectors of the matrices with the full cubic symmetry [17], do not
serve as such for the matrices given in (3.1). But, using the commutativity of the
matrices given in {2.2), we can diagonalize the general reflection symmetric matrix
H. One can verify that this is realized by replacing the set {|V}},|V,}} by the set
{IV,},1V_)} in the following way:

|V+) =)+ |Vy> |V+> = |V;) - IVy)‘ (3.2)

This transformation essentially diagonalizes the anisotropy of the model. Next we
introduce eigenvectors

.} = 1) 1) = 1V, |%a) = 1V_) ) = [V = V) (3.3)
which are normalized with respect to the (real) inner product

@VIV)) = 1 3 ale)be,). (34)

The eigenvalues of (3.1) corresponding to (3.3) are:

h0=a+b+cL+cR

h1=h+=a—-b—cL+cP‘ (3.5)
hzzh_za—b—{-cL—CR ’
h3:a+b—cL—cR.

Using this, the collision operators, 7X = WX —~ 1, are seen to have the following
eigenvalues, see (2.2):

B L R _
=2 =-2 f=0

t? =-2 tg‘ =0 tl-} = -2 (3.6)
2= 0 tf=-2 th = 2.
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The generalization of the Green—Kubo expression for the ‘total’ diffusion coefficient
to the present model is the same as we found in the preceding paper for the chiral
model, i.e.

1 2
=3 Y W (g=0,2=0)¢) — 1 = L (AT'+ A1 1) (3.7)
=1

with the vector eigenvalues A7'(= A7') and AZ!(= A;!) of the operator ([(0,0)).
I'(g, z) is the Fourier-Laplace transformed propagator [(1 + z)S — 1 — K]~%; see
(17,18,20] for details. However, for this model we can introduce ‘partial’ diffusion
coefficients, that are defined on the basis that diagonalizes the problem: instead of
taking the diffusion coefficient to be the time derivative of the mean square displace-
ment (nZ + n2), we define the partial coefficients as time derivatives of {(n, + n,)?)
and {(n, — n,}*}, respectively. This is worked out in detail in appendix 1. The result
1s two partial diffusion coeflicients D, and D_:

A

Ny =
72,

(3.8)

Wi |

The total coefficient is then given by D = (D, + D_), equivalent to (3.7). The
analogue for the chiral model would be a separation in two opposite ‘chiral’ terms
of the diffusion coeflicient. These quantities cannot be visualized straightforwardly,
while D and D_ for the mirror model can easily be measured in a simulation.

In the subsequent sections we will discuss various approx1matlon schemes to obtain
the eigenvalues A and A_.

4. Boltzmann approximation

In the Boltzmann approximation one neglects correlations between collisions, and
the configuration average reduces to a single-site average. The Boltzmann collision
operator is then

K® = (K)=8T" + y*T" 4 TR (4.1)

For the ‘total’ diffusion coefficient (3.7) we need the eigenvalues A, and A_ of this
operator, 1.e.

= —ptB — b MR =98 4 240

(4.2)

= —ﬁtg —_ 'thg’ - ';'Ri.f} =28+ 2R
(see (3.6)). We see that for the usual mirror model (3 = 0) the A, and A_ term are
just given by the densities of left- and right-oriented mirrors, respectively. For either
type of mirror, the reflection is in the (1,£1) direction, which is just the basis vector
corresponding to the # direction that came out of the diagonalization procedure.
Neglecting correlations between collisions (which is done by taking the Boltzmann
approximation) thus immediately decouples the two contributions to the diffusion
coefficient. In the case that we have only one type of mirror (say right-mirrors, see
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Figure 2. Exactly solvable model.

figure 2), the A, -part of the diffusion coefficient diverges. This corresponds to straight-
line motion in a diagonal direction. The A_ component is then ezactly given by the
Boltzmann result, because returns are impossible and all collisions are uncorrelated,
making the Boltzmann approximation exact.

In the Boltzmann approximation the diffusion coefficient D = %(D+ + D_)isin
general given by

ool 28+ + 4" B
T8

1
B2 + B(+L + yR) + vI9R 4 (4.3)

For the case # =0, ™ = 9L = L¢ this yields D = 1¢ - 1 [22].
2 2¢ 7 3

5. Ring and repeated-ring approximation

We note the following properties of deterministic lattice Lorentz gases models. In the
mirror model {(without reflections) a particle can never retrace part of its trajectory
in the opposite direction, as opposed to the chiral model. Therefore a particle can
return at most fwice to the same site before being trapped in a periodic orbit, whereas
in the chiral model this can happen four times [19]. We recall from [17,18] that for
the stochastic model no periodic orbits exist, and the trajectory between subsequent
repeated returns more likely consists of uncorrelated collision sequences. This makes
the dynamics summed by the RRA and the EMA more appropriate for the continu-
ous Lorentz gas, hopping models and the ballistic lattice Lorentz gas with stochastic
collision rules, than for the deterministic Jattice models.

The formulation of the ring and repeated-ring approximations (RA and RRA) and
their self-consistent counterparts for the mirror model is analogous to what we have
done for the chiral model of [20], the preceding papet, so we do not have to repeat the
formalism here.

For the mirror model we do not have an exact solution for the completely filled
lattice. As the ring integral depends both on the A, and the A_ eigenvalue, the
ring and repeated-ring approximations already destroy the decoupling of the + and -
contributions that occurs in the Boltzmann approximation.

The approximations discussed before are obtained by making specific choices for
the A, = —k7 — b,, where the k} are the eigenvalues of the Boltzmann collision op-
erator (4.1), and b, are those for the collision diagrams, explicitly given in operator
expressions in the preceding paper [20].
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6. Effective medium approximation

The effective medium approximation, which has been applied successfuily to ran-
dom resistor networks, hopping models and the stochastic lattice Lorentz gas
[17,18,32,36,37), has been generalized to a model with more types of different scat-
terers in [20]. Most of the formalism developed there, can be copied for the mirror
model. In general the effective medium condition

K, ~cT*
<1 - R(K, - cTe)> =0 (6.1)

yields a fourth-order equation if we consider the eigenvalues of the different operators
that oceur in the equation, see section 3. However, we will see that, for the specific
form of the eigenvectors, the EMA equation will now be two orders lower, as will be
explained later. So we have quadratic equations for the effective collision operator
eigenvalues A. The A are real.

For the mirror model the EMA is determined by the coupled equations for the
ring integral {A2.9) and the eigenvalue version of the EMA.condition (6.1). The latter
yields the eigenvalues A, of A = —¢T*, that can be substituted in (A2.9), through
(A2.10) and (A2.11), to calculate the corresponding eigenvalues of the ring operator.
For the evaluation of the ring integral we refer to appendix 2, here we first discuss the
EMA condition.

First, we have a closer look at the eigenvalues of the collision operators. In terms
of the eigenvalues for the mirror model, the EMA equation (6.1) is written explicitly
as

T AT T ey P T T Tty O
forf=1

—ct$ -2 —ct§ L —cts R —i-ct _
Ty T PTo e T Tom—ay) T T2 c)

(6.2)

for £ =2, and

—et§ —ct§ L —2—clf R —2—cti

2 =1

Ty ey T To -y 77 T2 o)

for £ = 3. Here we substituted in the EMA equation the explicit eigenvalues of the
collision operators TX given in (3.6). We see that the denominators always come in
pairs. This lowers the order of the equations by two. This simplification does not
occur for the chiral model of [20].

The diffusion coefficient is given by (3.7) with the present eigenvalues A, = —ectf,
A_ = —ct§, or written as the average of D, and D_, given in (3.8).

From the resulting eigenvalues t§ of T° in any of the approximations one can
calculate effective densities for the different types of scatterers. The matrix equation

oT® = BT + AL TL + 4R°TH (6.3)
yields
Be = —3c(i] +15—13)
7Le = i—c(—tf +15 —13) (6.4)
L

= Lo (1S — 15— 15).
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7. Other mirror models

Here we add to the mirror model the possibility of flipping and transmission. This
is interesting for studying the influence of stochastic effects and-effects that relate to
interaction between the moving particles. We will restrict ourselves to the models
that do not have reflectors, i.e. 8 = 0. First we study the model in which flipping of
This results in interactions between the moving particles, while the theory we have
presented so far concerns essentially only a single moving particle. We can modify the
theory to deal with the latter. The collision sequences contain alternatingly right- and
left-oriented mirrors; in between, the moving particles perform rings. These sequences
can be summed, yielding the repeated-ring approximation, for which the collision
diagrams are written as

B, =L [TRROTL + TLROTR ROTL] (1- ROTRRDTL)—l
+ 4" [TXROT® 4 TRROTVROTR] (1 — ROTVROTRY ™! (1.1)

Here we have used RC, the ring integral over the Boltzmann propagator. We have left
out reflectors, but in principle 4™ and ¥ do not have to be the same. We work this cut
using the explicit eigenvalues of the collision operators 7' and 7, given in (3.6). The
result is that for £ =1 and ¢ = 2 we have Bfig, = 0, and consequently the diffusion
coefficient in RRA coincides with the Boltzmann value. The tensor (£ = 3) eigenvalue
is different, and involves the eigenvalue of the ring operator, so it may play 2 role in
a self-consistent scheme, The most important self-consistent approximation scheme is
the EMA equation, which we can write down for the flipping mirror model with one
moving particle. Instead of repeated visits to alternatingly left- and right-mirrors, we
visit repeatedly fluctuations 67 = TV — ¢ and 6T® = TR — ¢7*. In fact one splits
up the repeated series of the usual EMA into an even and an odd subseries, and makes
the two series alternating. Then the EMA equation for the flipping mirror model is

a(—eT?)(1 = R(—cT%))~?
+ yM[6TRR6T™ + 6TV RSTRRSTY(1 — RSTR R6TL) ™!

+ yR[6TVR6T® + STR RSTVRST™(1 — RSTVRSTR) ™ = 0. (7.2)
Here, R is the self-consistent ring integral. The result of this exercise is that, also
in the context of the full EMA for the flipping mirror model, the diffusion coeflicient
coincides with the Boltzmann result. Investigation of this with the explicit eigenvalues
(8.6) shows that this does not follow from the EMA equation itself: the iteration with
the ring integral is needed to obtain this numerical result. This indicates cancellations
of diagrams, similar to what we obtained for the stochastic lattice Lorentz gas with
only left-right collisions, see [17]. We conclude that accounting for ring and nested-
ring type of evenis does not yield deviations from Boltzmann.

Another model is one in which the mirrors flip orientation only with a ceriain
probability, say py. With some algebra we can find expressions analogous to (7.1) and
{(7.2). For this model, simulations (see section 8) show that already for small non-zero
flip probabilities the diffusion coefficient differs substantially from the fixed-mirror
value [21]. The former is smaller and the latter is larger than the Boltzmann value,
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as we discuss in section Sm‘Before commenting on this, we also introduce the mirror
model with transmission probablhty Pir-

Both introduction of flipping and transmission are intuitively expected to yield
better agreement with Boltzmann, as their stochastic properties have a randomizing
effect. For small values of py and p, , however, we observe that the deviations from
Boltzmann do not decrease, but merely change sign. Some typical trajectories that
may be involved are shown in figure 3. They are orbiting trajectories. We have
only drawn the mirrors that we focus on; the actual form of the remaining parts of
the trajectories is not relevant. First we discuss the case with a small transmission
probability. For the trajectories of figure 3(a) with fixed mirrors, there are positive
correlations inside each orbit at either side of the mirror. As a particle leaks through
the mirror, which for low p,. is assumed to occur only once on the timescale we
consider, 1t will not return to previously visited sites, and the correlations are lost.
However, the trajectory in figure 3(3) hits both sides of the mirror. If the particle
leaks through here, it will travel on the same trajectory in the oppesite direction, and
the contributions from correlations get a negative sign. Further, in figure 3{c) we have
drawn a more complicated orbiting trajectory, for which leaking through only means
that the particle ‘skips’ a part of its trajectory: the sign of the correlation remains
positive.

a) b) c)

Figure 3. Typical orbiting trajectories.

Similar arguments apply for the case of flipping probability pg, where the mirror
is assumed to flip only once. In figure 3(a), the two orbits will be combined to a
longer orbit. In figure 3(4) flipping of the mirror will split up the trajectory. Both
will occur at the cost of positive correlation. In the trajectory of figure 3(c), however,
flipping of the mirror will send the particle in the opposite direction, and thus the sign
of the correlation contributions from these orbits is changed. As the trajectories of
figure 3(c) are more complicated, their effect will be less than in the case of a small
transmission probability. For further remarks we refer the reader to section 8.

8. Results and discussion

We calculate the diffusion coefficient for the mirror model using several approximation
schemes. Some of them are standardly used in kinetic theory; in addition, we also
consider the effective medium approximation (EMA). We choose some typical sets of
parameters where, in the spirit of the original model, we usually take # = 0. Later on,
we will briefly report on cases with 8 # 0. For the present model, the EMA equations
(6.2) are only quadratic, in spite of the four terms in occurring in the general EMA
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equation {6.1). The ring integral, however, has in general the complicated form (A2.9).
We have computed it numerically.

Nevertheless, there exists a subclass of models for which the ring integral does
have the same form as for the stochastic and the chiral rnodel of [17,20], respectively;
for the resulting analytic expression we refer to those papers. The class for which this
is the case is that of isotrepic models, i.e. with equal densities of left and right mirrors.
The elements (3.8) of the diffusion tensor are then equal: D = D_ = D. According
to (4.2) we have A\; = A,, and we conclude from (A2.11) that the additional term in
the denominator vanishes, leaving the denominator symmetric for z — —z, causing
the (antisymmetric) term with C, in the numerator to vanish in the integration, and
we recover the integral we calculated analytically in [17]. However, this does not imply
that the results will be the same as for the stochastic model (where we always have
4L = 4R}, or the chiral model of [20] with 71 = &, because the collision operators
entering in the EMA condition (6.2) are different from the T% and T in the other
models. The fact that we have an analytical result for the ring integral, together with
quadratic EMA equations for the eigenvalues, makes the caleulation quite feasible.

The most obvious isotropic model is that with 3 = 0 and vV = 4R = —é-c for ¢
from 0 to 1 (full lattice). The results from the present kinetic theory method are
displayed in figure 4. Tt shows that all ring approximations and the EMA are below
the Boltzmann values; the EMA remains below Boltzmann for ¢ = 1, while the ring
and repeated-ring approximations bend back to the Boltzmann value as the full lattice
is approached.

O o
4 YL - TR - ilc i
0.8 - u
o fixed mirrors 77 R
ippi i — . — Rk L
o flipping mirrors o
0.6 - o flippisg, 1 particle __ boltzaamn &
E “i* ‘L * 4 + + + |
° AAARAXTT IO
0.2 _
o

0.0 0.2 0.4 0.6 08 1.0

[+
Figure 4. Mirror model for 4 = 0 and b = 4R = %c. Simulations from [23].

For this model we also performed computer simulations, which agree within error
bars with the much more extensive computer simulations performed by Kong and Co-
hen [23]; the latter are displayed in figure 4. These simulations confirm the existence of
a positive deviation from the Boltzmann diffusion coefficient at intermediate densities
[23). This effect was only vaguely observable in the early simulations {22]. The positive
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deviation is peculiar, because usually ring collisions, as they refer to returns to the
same site, with on the average a velocity v, (t) opposite to v,(0), yield a negative con-
tribution to the VACF and the diffusion coefficient. Usually, for low densities the ring
collisions are the first correction to the Boltzmann value. The stochastic modet of [17]
fits this picture. The remarkable positive deviation in the mirror model is explained
in [23] in a qualitative manner as to originate from local fluctuations in the densities
of mirrors: an excess of one type induces staircase-like behaviour over the region of
the fluctuation. It is similar to the rattling behaviour between two nearby trees in the
Ehrenfest wind-tree model {33}. It is further argued that this effect is responsible for
the mere existence of diffusion in this model. Note the peculiarity that for the full
lattice, the simulation result lies below the Boltzmann value.

The fluctuations of the densities of left and right mirrors are assumed to have
much less effect in the case of the flipping mirror model: upon being hit by a moving
particle, the mirror flips orientation. This introduces interactions between the moving
particles, an effect that is definitely not accounted for by the present kinetic theory, see
section 7. However, the main effect will be a randomization of the mirror orientation.
In general, flipping of the mirrors causes the moving particle(s) to randomize the mirror
orientations. Consequently, the geometrical constraint that a moving particle can only
return twice to its point of origin, with only uncorrelated collisions in between, is lifted.
The model with flipping mirrors also has much betier ergodic properties: simulations
seem to indicate that phase space consists essentially of a single orbit {22, 23].

Simulations of this model show a negative deviation from the Boltzmann value
for ¢ up to ¢ = 0.85. In spite of the inapplicability of the present analysis for the
fixed mirror model to the flipping mirror model, the EMA and the ring approximations
seemn to describe the simulation data quite well over a reasonable range of densities,
as we show in figure 4. Note that here, only for the almost full lattice, the simulations
exceed Boltzmann, contrary to what we observe for the fixed mirror case.

For the (fixed) mirror model with y& = 4™ = Lc the deviations from Boltzmann are
most prominent at densities of ¢ = 0.5-0.9. In order to investigate these peculiarities at
intermediate densities, we study the model with tunable parameters, namely flipping
and transmission probabilities. In section 7 we introduced these models and discussed
them by considering typical trajectories that may be responsible for the effects at low
probabilities. The collision sequences of figure 3 are so-called ‘orbiting’ trajectories.
Our kinetic theory (including the application to flipping mirrors in section 7) does
not account for them, as it only includes {the whole set of) ring and nested-ring
diagrams [18]. In figure 5 we present the simulation results for the mirror model
with fransmission probability, In order to have a constant Boltzmann value we kept
¢* = ¢(1 — p,,) fixed; then Dg, = (2¢*)~! — ;. We indeed observe a phase transition
for p,, = 0. Moreover, the deviation from Boltzmann seems just to change sign with
respect to the fixed mirror case; the density considered is ¢ = 0.7. For other densities
the competition between the different contributions, see figure 3, may give different
results. In figure 6 we plot the simulations for the flipping mirror model as a function
of the flip probability ps. In figure 6(a) there is only one moving particle present
in the system. Here we find the same features, only less prominent. This difference
between these two models is in line with our low-probability remarks in section 7
that for the flipping mirror model the effect is caused by the more complicated, and
thus less probable trajectories of figure 3(c), while for the transmission model the
orbits of figure 3(b) are important. Finally, in figure 6(b), we present the data for the
flipping mirror model with many particles (typically 1500 in a 500x500 lattice). Here,
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the interactions clearly randomize the dynamics, and we find Boltzmann diffusion
coefficients already for smali flipping probabilities [21]. This reflects the fundamental
difference between the model with a single moving particle and the one with many
particles, which could not clearly be concluded from the results at py = 1, see figure 4.
We have also run simulations for other densities, i.e. ¢ = 0.4,0.5,0.6,0.8,0.9,0.95 and
1.00. The features for ¢ < 1.0 and small flipping probabilities are qualitatively the
same. It may be that for high flipping probability, entirely different effects play a role
[25]. We note that the moving particle needs to ‘see’ that there is a transmission ot
flipping probability. In order to obtain the full effect, we performed the pg = 0.01 and
p,. = 0.01 simulations for { up to 3000 units, instead of ¢ = 1000. In order to make
the error bars of the p = () and p = 1 data visible, we plotted the data a little inside
the frame.

045 ¢ = 0.0 i
0.40 A

0.35 4 |

Cu\Cy

0.2¢ ——
0.0 0.2 0.4 0.6 0.8 1.0

transmission prob. p,,

Figure 5. Results for mirrors with transmission probability, at mirror density ¢* =
0.7.

We continue with a brief discussion of (fixed-mirror) models with reflector sites as
well as mirror sites. Here, 8 # 0, but still +* = 4®. So these models are isotropic
and thus involve ring integrals that can be calculated analytically. Preliminary re-
sults calculated in effective medium approximation (EMA) indicate that the diffusion
coefficient practically vanishes as soon as the scatterer density is non-zero. This cor-
responds to the notion that there is no diffusion in this case, as the average length
of the trajectory is proportional to #~! and the particle simply moves up and down
between the endpoints, which contain reflectors. The probability for the particle to
traverse the lattice {of linear size L ~ 1000) without being trapped in such an orbit,
is thus of the order of exp(—#L). Although the simulations were unable to confirm
or exclude whether diffusion does exist at large times in the chiral and in the mirror
model, here the reflectors destroy any behaviour that remotely looks like diffusion.
It is surprising that even in this extreme case the EMA is capable of explaining the
absence of diffusion in the presence of reflectors, at least in a qualitative sense. For
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Figure 6. Results for mirrors with flipping probability, at mirror density ¢ = 0.7:
() 1 moving particle; (b) many moving particles, interacting through mirrors.

this case the breakdown of the Boltzmann equation is obvious. A short-time simu-
lation with parameter values 8 = 0.lc, ¥¥ = 0.45¢ and v& = 0.45¢ yields diffusion
coeflicients of the order of 0.1 and (.02 for ¢ values of 0.1 and 0.2, respectively, which
is indeed practically zero. We used only 200 time steps. It is not expected that this
qualitative feature depends on whether we have an isotropic model (Y& = 4®) or an
anisotropic model (v¥ £ vR).

For the general anisotropic case, i.e. fixed mirrors with y # ¥R and no restric-
tions on 3, the ring integral has the general form (A2.9), which we evaluated numer-
ically, However, while in the cases described before the iteration of the EMA equa-
tions converged sufficiently rapidly, we did not obtain convergence for any deviation
from isotropy. Numerical methods do not yield solutions, indicating that the effective
medium approximation does not work out well for this model. The same is the case for
the self-consistent ring and repeated-ring approximations (SRA and SRRA). See also
[18) for similar technical difficulties. Of course, it is possible to calculate the Boltz-
mann approximation and the ring and repeated-ring approximation (RA and RRA),
as they are straightforward calculations. The results for the case 4% = %C, ¥R = %c
are displayed in figure 7, together with simulation data. Qur simulations were carried
out with lattices of up to 1000x 1000 sites and periodic boundary conditions. They
exhibit qualitatively the same behaviour as the isotropic case, for both elements of
the (diagonalized) diffusion tensor. We observe that the data for the larger of the
two elements lie farther away from the Boltzmann prediction than those for the lower.
This is consistent with our earlier remarks (section 4) concerning the model with only
one type of mirrors. One element of the diffusion tensor, corresponding to diffusion in
the diagonal direction, diverges becausc the particle has a uniform velocity parallel,
say, to the right mirrors, in the (1,1) direction, and the mean square displacement
{(n; + n,)?) grows as t*. In the perpendicular (1, 1) direction, the mean square
displacement {(n, — n,)?) ~ 2Dt as t — oo with D ezactly given by the Boltzmann
equation (4.3), because correlated collisions are absent in this model. We also see that
it takes time for the particles to explore the deviations from Boltzmann; this is seen
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most clearly by the difference in the t = 200 data and the ¢ = 2000 data for the partial
diffusion coefficient D .
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Figure 7. Anisotropic mirror model with Y = %c, ¥
D at several values of time t.

An interesting property of the fixed mirror inodel without reflectors is that diffusion
still exists at high densities. This has been shown for a completely filled lattice with
b= 4R = % by mapping it on two-dimensional bond percolation [34]. It is also
possible to calculate the asymptotic long-time form of the probability distribution
for displacements. It turns out that the second moment of this distribution grows
linearly with time, allowing the definition of a diffusion coefficient by using the Einstein
relation. On the other hand, higher moments no longer show Gaussian behaviour,
implying that the probability distribution does not satisfy Fick’s diffusion equation.
Although very slowly, the kurtosis, defined as K = ({z') — 3({z?)?)}/({2?)?, grows with
time. In the Gaussian case the kurtosis goes to zero for long times. Kong and Cohen
[25] have performed extensive computer simulations of the mirror model, and analysed
the anomalouns diffusion of the model in great detail. They find that for the isotropic
model (¥ = 4R = %c) the kurtosis increases from zero at low densities to values of
1.2740.16, 1.66+0.13 and 3.640.2 for ¢ values of 0.9, 0.95 and 1.0, respectively. The
simulations were run for 4000 mean free times {_, ~ ¢~!. Kinetic theory methods,
able to explain this peculiar behaviour, are not available.

In summary we make the following points.

(i) We have seen that the present kinetic theory (ring approximations and EMA),
and also the molecular chaos assumption of the Boltzmann equation, are unable to
explain the intriguing results for the mirror model with fized mirrors.

(ii) The present kinetic theory analysis for the flipping mirror model yields no
deviations from the Boltzmann diffusion coeflicient, neither in the repeated-ring ap-
proximation nor in the full EMA. This does not agree with the simulation data.

(iti} Unexpectedly, however, our EMA results for fired mirrors seem to describe the
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simulation data for the flipping mirrors of [23] quite well over a large range of densities
{c <0.9).

(iv) Our study of small flipping and transmission probabilities provides arguments
that the deviations of kinetic theory from the simulations are caused by orbiting
collision sequences. (See [17,18,20] and figure 3.) They are more important in deter-
ministic than in stochastic models. Unfortunately, they are not accounted for in the
kinetic theory. It would be of interest to analyse theoretically the contributions from

"‘hﬁ ﬂ'l'h'lfl'ﬂﬂ' l'ﬁ]]'lelnn IeMilancag
LUt Ll Riviai g WL OO ti{lie § Lo B}

(v) In general, flipping and transmission probability have a randomizing effect,
yielding Boltzmann diffusion coefficients. However, although this is indeed the case for
intermediate flipping or transmission probabilities (pg, p,, = 0.4~ 0.6), it is definitely
not true for small transmission probabilities or small flipping probabilities in the case
of one moving particle.

{(vi) For the fixed mirror model without reflectors diffusion still exists at high
densities [34]. The second moment of the probability distribution grows linearly with
time, allowing the definition of a diffusion coefficient by using the Einstein relation.

(vi1) On the other hand, higher moments no longer show Gaussian behaviour,
implying that the probability distribution does not satisfy Fick’s diffusion equation,
Also this is an area for which further theoretical investigations would be of interest.
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Appendix 1. Green—Kubo formula for partial diffusion

This appendix sketches the derivation of the Green-Kubo formula for the ‘partial’
diffusion coefficients, as introduced at the end of section 2. Writing the mean square
displacement for two dimensions as

(ni—é—nf) = %((n,_,—}-ny):’+(nr—-—ny)"’_) (AL.1)

we define the (time-dependent) partial diffusion coefficients D_ (t) and D_(t) by

2
4D, (t) = A{(n () £ n (1)) (Al1.2)
— NI S 21 - s . i DTy A 2N P DA IVS (NI DUV LU
Hecail thal 10r the 1SOLropic case we have ZL/ = AN ). APPLYIIE Le LIE alnereiice
and using the fact that
t
na(t+1) = v,(7) (A1.3)

=0
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we can write this as the average of:
v (1) (na(t + 1)+ n (1) + v, (1) (n, (t + 1) + my (1))

t t—1
+2 ) v (@) ) =2 Y v (@), (7). (AL4)

o, r=0 o, r=0

After some more algebra, this can be written as

(Z L)+ 5,0) (o, (r)+vy(r))>—<vza)>~(v3(t». (ALS)

=0

For D_ the derivation is similar. Finally we have, using time reversal symmetry and
{v2{0)} = £ (in two dimensions):

b= 2 ey (0) - 1 (AL6)
T=0
where
v () = v, (1) £ vy (1) (A1)

With these definitions of D+ and D_ the total diffusion coeflicient is then found to
be

[( v, (£)v,(0)) + {1, (H)v, (O] — & (ALSB)

l

gME’

just as it should be. Used here is that (v, (t)v,(0)) = 0, etc.

Appendix 2. Ring integral

For the calculation of the transition probabilities, (i.e. the effective densities of the
different scatterers) in the various approximations, we restrict ourselves to the z = 0
case, as we aim for the static diffusion coefficient. We evaluate the eigenvalues of the
ring operator

R(z:O)_—.f(ei“‘V—l—K'(z:O))-l. (A2.1)

)

They are:
o= (GIRIG) = [Wila) (A22)

with A, satisfying

(eiqv — 1 —cT}Ay) = |¥,) (A2.3)
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The matrix elements By, are defined as {17]
Byy = (¥ul(e?” —1)7 Y4, (A2.4)

The effective collision matrix —cT* = A is decomposed into projection operators P,
on the eigenspaces (3.3) of the reflection symmetric operator:

—CT’C:A:I\IPI'{'/\BP?‘*'ASP:; (A2-5)
where

Py = IW'JA)('/’A- (AQ-G)

The values or expressions to be substituted for the A will correspond to the actual
approximation (RA, RRA, SRA, SRRA or EMA) that we wish to study. The equations
for the components of the vector A, are formally the same as for the chiral model that
we studied in [20):

14+ X By, ABy, A3Bys (1] A4g) By,
A By 1+ A, By, AzBas {(¥alAg) | = | Bae | - (A2.7)
A\ R I\ n 1LY R [11‘\_|4‘l\ "
Ay Dy AyBay 14 AgBas / N\ Wsid,) ) \ Zai /

We find for the matrix elements B,,,:

Buszz-_'Bss:"% By, =By =0

(A2.8)
Biy= By = —ih, +ih, By = By = —ih, —ih,

with h, = 1sing,/(1 — cosg,). The {¢¥u|A4,;) can now be calculated. However, after

carrying out the algebra one concludes that, for this model, the ring integral cannot
be written in the familiar form that one finds for the stochastic model of [17] or the
chiral model of [20]. The cross terms, i.e. some sin g, terms, do not drop out. The
result is:

. ] Ay +16B,(h2 + h2) + 16C,h_h, (A29)
. E+16F(hZ + h2) + 16Gh_k,
for £=1,2,3. The coefficients A,, B,, E and F are given by:
Ap = =51 = 53,)(1 = §Xq) By = Fh5(1-Xy)
A2=‘%(1“%'\1)(1* %'\3) B, = Tla'\a(l‘“)‘l) (A2.10)
Ag = —3(1~ 321~ §X,) By = 15(A1 4 A~ A hy)
E=(1=3A)(1 - 32,01~ 343) Fo= e300 + 2, = Ahy)

which are the same as in [20], but now there is also
Cy=-1i Cy = LA; Cs = (A, — A3) G=3x(4, =) (A211)

Because of these extra terms (especially in the denominator), the ring integral is
different from the one we calculated analytically in [17]. Therefore the integral was
evaluated numerically.
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